2020 Consumer Confidence Report

Water System Name: Fall River Valley C.S.D. Report Date: April 2021

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2020.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 1 source(s): Well 1-McArthur Well

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board meetings are held at the District Office on the WEDNESDAY AFTER THE 10TH OF THE MONTH at 6:00 P.M.

For more information about this report, or any questions relating to your drinking water, please call (530)336-5263 and ask for Cecil Ray or visit our website at www.frvcsd.org.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

NTU: Nephelometric Turbidity Units

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5 and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER											
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant					
Copper (mg/L)	(2018)	10	0.03	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives					

	Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant						
Sodium (mg/L)	(2020)	21	n/a	none	none	Salt present in the water and is generally naturally occurring						
Hardness (mg/L)	(2020)	56.4	n/a	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring						

Table 3 - D	Table 3 - DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]		Typical Sources of Contaminant						
Arsenic (ug/L)	(2020)	7	n/a	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes						
Gross Alpha (pCi/L)	(2014)	1.52	n/a	15	(0)	Erosion of natural deposits.						

Table 4 - DETEC	Table 4 - DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant						
Chloride (mg/L)	(2020)	6	n/a	500	n/a	Runoff/leaching from natural deposits; seawater influence						
Odor Threshold at 60 °C (TON)	(2014)	4	n/a	3	n/a	Naturally-occurring organic materials.						
Specific Conductance (umhos/cm)	(2020)	228	n/a	1600	n/a	Substances that form ions when in water; seawater influence						
Sulfate (mg/L)	(2020)	18.2	n/a	500	n/a	Runoff/leaching from natural deposits; industrial wastes						
Total Dissolved Solids (mg/L)	(2020)	170	n/a	1000	n/a	Runoff/leaching from natural deposits						
Turbidity (NTU)	(2014)	0.2	n/a	5	n/a	Soil runoff						

	Table 5 - DETECTION OF UNREGULATED CONTAMINANTS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant							
Boron (mg/L)	(2020)	0.3	n/a	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.							
Vanadium (mg/L)	(2020)	0.037	n/a	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.							

_	Table 6 - ADDITIONAL DETECTIONS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant							
Calcium (mg/L)	(2020)	16	n/a	n/a	n/a							
Magnesium (mg/L)	(2020)	4	n/a	n/a	n/a							
pH (units)	(2020)	7.8	n/a	n/a	n/a							
Alkalinity (mg/L)	(2020)	80	n/a	n/a	n/a							
Aggressiveness Index	(2020)	11.3	n/a	n/a	n/a							
Langelier Index	(2020)	-0.5	n/a	n/a	n/a							

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Fall River Valley C.S.D.* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water

has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION (OF A MCL,MRDL,AL,TT, OR I	MONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Odor Threshold at 60 °C	The result is based on one sample collected in 2014.	July 10th 2014	Fall River Valley CSD has not received excessive odor complaints in the last 5 years and has not taken any action.	Odor was found at levels that exceed the secondary MCL. The Odor MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.

About your Arsenic: For Arsenic detected above 5 ug/L (50% of the MCL) but below 10 ug/L: While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

2020 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL 1-MCARTHUR WELL of the FALL RIVER VALLEY CSD water system in April, 2002.

Well 1-McArthur Well - is considered most vulnerable to the following activities associated with contaminants detected in the water supply:

Agricultural Drainage

Crops, non-irrigated [e.g., Christmas trees, grains, grass seeds, hay,

is considered most vulnerable to the following activities not associated with any detected contaminants:

Wells - Agricultural/ Irrigation

Discussion of Vulnerability

Due to the detection of Arsenic, Mc Arthur/Lewis Rd well is considered vulnerable to activities that may have contributed to or caused the release of Arsenic. In particular, Arsenic is believed to be associated with runoff from orchards, glass and electronics production wastes, and erosion of natural deposits. Arsenic was detected for the McArthur/Lewis Rd well since 1988 with results reaching up to 9.8 UG/L compared to the prior MCL of 50 UG/L. The well arsenic remains below the current MCL of 10 UG/L.

Due to the detection of Fluoride, Mc Arthur/Lewis Rd well is considered vulnerable to activities that may have contributed to or caused the release of Fluoride. In particular, Fluoride is believed to be associated with water additive that promotes strong teeth: discharge from fertilizer and aluminum factories, and the erosion of natural deposits. Fluoride was detected for Mc Arthur/Lewis Rd well before March 1995 with results reaching up to .1 Mg/L compared to the MCL of 1.4 Mg/L.

Acquiring Information

A copy of the complete assessment may be viewed at: Fall River Valley C.S.D. 24850 Third Street Fall River Mills, CA 96028

You may request a summary of the assessment be sent to you by contacting: Mey Bunte
Assoc. Sanitary Engineer
(530) 224-3265

Fall River Valley C.S.D. Analytical Results By FGL - 2020

		LEA	D AND C	OPPER RUI	.E				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples
Copper		mg/L		1.3	.3			0.03	10
24814 Long St	CH 1875616-7	mg/L				2018-07-10	ND		
24825 Mechanic St	CH 1875616-10	mg/L				2018-07-12	ND		
24850 Third St	CH 1875616-5	mg/L				2018-07-12	ND		
24990 Shasta St.	CH 1875616-2	mg/L				2018-07-11	ND		
26393 Grove St.	CH 1875616-9	mg/L				2018-07-10	ND		
42950 Little Lakes Dr	CH 1875616-3	mg/L				2018-07-11	ND		
43088 Bridge St.	CH 1875616-1	mg/L				2018-07-09	0.07		
43236 5th St.	CH 1875616-8	mg/L				2018-07-11	ND		
43511 Hwy 299	CH 1875616-4	mg/L				2018-07-09	ND		
43527 Sierra Crt Dr	CH 1875616-6	mg/L				2018-07-09	ND		

	SAMPLING RESULTS FOR SODIUM AND HARDNESS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Sodium		mg/L		none	none			21	21 - 21			
Well 1-McArthur Well	CH 2076682-1	mg/L				2020-08-13	21					
Hardness		mg/L		none	none			56.4	56.4 - 56.4			
Well 1-McArthur Well	CH 2076682-1	mg/L				2020-08-13	56.4					

	PRIMARY DRINKING WATER STANDARDS (PDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Arsenic		ug/L		10	0.004			7	7 - 7			
Well 1-McArthur Well	CH 2076682-1	ug/L				2020-08-13	7					
Gross Alpha		pCi/L		15	(0)			1.52	1.52 - 1.52			
Well 1-McArthur Well	CH 1474226-1	pCi/L				2014-07-10	1.52					

	SECOND	ARY DRINK	ING WAT	TER STAND	OARDS	(SDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chloride		mg/L		500	n/a			6	6 - 6
Well 1-McArthur Well	CH 2076682-1	mg/L				2020-08-13	6		
Odor Threshold at 60 °C		TON		3	n/a			4	4 - 4
Well 1-McArthur Well	CH 1474226-1	TON				2014-07-10	4		
Specific Conductance	Specific Conductance			1600	n/a			228	228 - 228
Well 1-McArthur Well	CH 2076682-1	umhos/cm				2020-08-13	228		
Sulfate		mg/L		500	n/a			18.2	18.2 - 18.2
Well 1-McArthur Well	CH 2076682-1	mg/L				2020-08-13	18.2		
Total Dissolved Solids		mg/L		1000	n/a			170	170 - 170
Well 1-McArthur Well	CH 2076682-1	mg/L				2020-08-13	170		
Turbidity		NTU		5	n/a			0.2	0.2 - 0.2
Well 1-McArthur Well	CH 1474226-1	NTU				2014-07-10	0.2		

UNREGULATED CONTAMINANTS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Boron		mg/L		NS	n/a			0.3	0.3 - 0.3		
Well 1-McArthur Well	CH 2076682-1	mg/L				2020-08-13	0.3				
Vanadium		mg/L		NS	n/a			0.037	0.037 - 0.037		
Well 1-McArthur Well	CH 2076682-1	mg/L				2020-08-13	0.037				

ADDITIONAL DETECTIONS												
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Calcium		mg/L			n/a			16	16 - 16			
Well 1-McArthur Well	CH 2076682-1	mg/L				2020-08-13	16					
Magnesium		mg/L			n/a			4	4 - 4			
Well 1-McArthur Well	CH 2076682-1	mg/L				2020-08-13	4					
рН		units			n/a			7.8	7.8 - 7.8			
Well 1-McArthur Well	CH 2076682-1	units				2020-08-13	7.8					
Alkalinity		mg/L			n/a			80	80 - 80			
Well 1-McArthur Well	CH 2076682-1	mg/L				2020-08-13	80					
Aggressiveness Index					n/a			11.3	11.3 - 11.3			
Well 1-McArthur Well	CH 2076682-1					2020-08-13	11.3					
Langelier Index					n/a			-0.5	-0.50.5			
Well 1-McArthur Well	CH 2076682-1					2020-08-13	-0.5					

Fall River Valley C.S.D. CCR Login Linkage - 2020

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
24814 Long St	CH 1875616-7	2018-07-10	Metals, Total	24814 Long St	Copper & Lead Monitoring
24825 Mechanic	CH 1875616-10	2018-07-12	Metals, Total	24825 Mechanic St	Copper & Lead Monitoring
24850 Third St	CH 1875616-5	2018-07-12	Metals, Total	24850 Third St	Copper & Lead Monitoring
24990 Shasta St	CH 1875616-2	2018-07-11	Metals, Total	24990 Shasta St.	Copper & Lead Monitoring
26393 Grove St.	CH 1875616-9	2018-07-10	Metals, Total	26393 Grove St.	Copper & Lead Monitoring
42950 Little La	CH 1875616-3	2018-07-11	Metals, Total	42950 Little Lakes Dr	Copper & Lead Monitoring
43088 Bridge St	CH 1875616-1	2018-07-09	Metals, Total	43088 Bridge St.	Copper & Lead Monitoring
43236 5th St.	CH 1875616-8	2018-07-11	Metals, Total	43236 5th St.	Copper & Lead Monitoring
43511 Hwy 299	CH 1875616-4	2018-07-09	Metals, Total	43511 Hwy 299	Copper & Lead Monitoring
43527 Sierra Cr	CH 1875616-6	2018-07-09	Metals, Total	43527 Sierra Crt Dr	Copper & Lead Monitoring
Bacti-Rout-ss01	CH 2070195-1	2020-01-09	Coliform	B1 - FRM Sampling Tap	Bacteriological Monitoring
	CH 2070205-1	2020-02-13	Coliform	B1 - FRM Sampling Tap	Bacteriological Monitoring
	CH 2071788-1	2020-03-12	Coliform	B1 - FRM Sampling Tap	Bacteriological Monitoring
Bacti-Rout-ss02	CH 2070195-2	2020-01-09	Coliform	B2 - MAC Sampling Tap	Bacteriological Monitoring
	CH 2070205-2	2020-02-13	Coliform	B2 - MAC Sampling Tap	Bacteriological Monitoring
	CH 2071788-2	2020-03-12	Coliform	B2 - MAC Sampling Tap	Bacteriological Monitoring
Bacti-Rout-ss01	CH 2072437-1	2020-04-09	Coliform	FRM Sampling Tap	Bacteriological Monitoring
	CH 2073357-1	2020-05-14	Coliform	FRM Sampling Tap	Bacteriological Monitoring
	CH 2074109-1	2020-06-11	Coliform	FRM Sampling Tap	Bacteriological Monitoring
	CH 2075095-1	2020-07-09	Coliform	FRM Sampling Tap	Bacteriological Monitoring
	CH 2076681-1	2020-08-13	Coliform	FRM Sampling Tap	Bacteriological Monitoring
	CH 2077463-1	2020-09-10	Coliform	FRM Sampling Tap	Bacteriological Monitoring
	CH 2078175-1	2020-10-08	Coliform	FRM Sampling Tap	Bacteriological Monitoring
	CH 2079162-1	2020-11-12	Coliform	FRM Sampling Tap	Bacteriological Monitoring
	CH 2079654-1	2020-12-10	Coliform	FRM Sampling Tap	Bacteriological Monitoring
Bacti-Rout-ss02	CH 2072437-2	2020-04-09	Coliform	MAC Sampling Tap	Bacteriological Monitoring
	CH 2073357-2	2020-05-14	Coliform	MAC Sampling Tap	Bacteriological Monitoring
	CH 2074109-2	2020-06-11	Coliform	MAC Sampling Tap	Bacteriological Monitoring
	CH 2075095-2	2020-07-09	Coliform	MAC Sampling Tap	Bacteriological Monitoring
	CH 2076681-2	2020-08-13	Coliform	MAC Sampling Tap	Bacteriological Monitoring
	CH 2077463-2	2020-09-10	Coliform	MAC Sampling Tap	Bacteriological Monitoring
	CH 2078175-2	2020-10-08	Coliform	MAC Sampling Tap	Bacteriological Monitoring
	CH 2079162-2	2020-11-12	Coliform	MAC Sampling Tap	Bacteriological Monitoring
	CH 2079654-2	2020-12-10	Coliform	MAC Sampling Tap	Bacteriological Monitoring
Pittville	CH 2071123-1	2020-02-13	Coliform	Pittville	Bacteriological Monitoring
WELL 01	CH 1474226-1	2014-07-10	Radio Chemistry	Well 1-McArthur Well	Water Monitoring
	CH 1474226-1	2014-07-10	Wet Chemistry	Well 1-McArthur Well	Water Monitoring
	CH 2076682-1	2020-08-13	Metals, Total	Well 1-McArthur Well	Water Quality Monitoring
	CH 2076682-1	2020-08-13	General Mineral	Well 1-McArthur Well	Water Quality Monitoring